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ABSTRACT: The extended Lagrangian Born−Oppenheimer molecular
dynamics formalism [Niklasson, Phys. Rev. Lett., 2008, 100, 123004] has
been applied to a tight-binding model under the constraint of local charge
neutrality to yield microcanonical trajectories with both precise, long-term
energy conservation and a reduced number of self-consistent field
optimizations at each time step. The extended Lagrangian molecular
dynamics formalism restores time reversal symmetry in the propagation of
the electronic degrees of freedom, and it enables the efficient and accurate
self-consistent optimization of the chemical potential and atomwise
potential energy shifts in the on-site elements of the tight-binding
Hamiltonian that are required when enforcing local charge neutrality.
These capabilities are illustrated with microcanonical molecular dynamics
simulations of a small metallic cluster using an sd-valent tight-binding
model for titanium. The effects of weak dissipation on the propagation of
the auxiliary degrees of freedom for the chemical potential and on-site Hamiltonian matrix elements that is used to counteract the
accumulation of numerical noise during trajectories was also investigated.

1. INTRODUCTION
Atomistic and molecular dynamics (MD) simulations are
powerful tools for the study of phase stability, elasticity, crystal
defects, plasticity, fracture, and response to dynamic stimuli in
metals. For an overview of many of these applications, see refs 1
and 2. The fidelity of the results of these simulations is
controlled mainly by the physical accuracy of the description of
interatomic bonding that is used. Models for interatomic
bonding based on first principles electronic structure methods
such as density functional theory (DFT)3,4 are usually held as
the gold-standard in terms of accuracy. However, the
computational expense of first principles methods typically
limits their application to relatively small numbers of atoms and
short molecular dynamics simulation times. Semi-empirical
models, including tight-binding theory, explicitly describe the
electronic structure of materials, but they do so from a
simplified and parametrized effective single-particle Hamilto-
nian.5,6 The use of a small, atom-centered basis and
parametrized matrix elements in tight-binding models can
lead to a 103 to 104 speed-up with respect to first principles
schemes while maintaining much of the accuracy and
transferability that arises from an underlying quantum-based
description of the electronic structure.
Electronic structure methods such as density functional

theory, Hartree−Fock theory, and their semi-empirical
derivatives require the electronic degrees of freedom to be
computed self-consistently since the effective single particle
Hamiltonian or Fockian itself depends on the charge
distribution. The self-consistent field (SCF) optimization
takes the form of an iterative series of updates based on

mixtures of solutions of the single particle Hamiltonian. When
starting from a poor initial guess for the self-consistent charge
density or distribution, one may require 15−25 SCF cycles
before self-consistency is achieved.
The requirement in Born−Oppenheimer molecular dynam-

ics7 for computing the interatomic forces at the self-consistent
electronic ground state at each time step is a burden on the
overall performance since the SCF optimization is computa-
tionally very expensive. However, since the difference in the
charge density between successive time steps is small, it is
customary to obtain a reasonable starting guess for the SCF
optimization procedure by extrapolating the charge distribu-
tions from previous time steps. While this process can lead to a
significant reduction in the number of SCF cycles required at
each time step before self-consistency is achieved to within a
user-defined tolerance, microcanonical trajectories computed
using this procedure exhibit a systematic drift in the total
(potential plus kinetic) energy.8−10 The magnitude of the drift
in the total energy can be reduced, although at increased
computation cost, by increasing the number of SCF cycles at
each time step. The ability to compute accurate microcanonical
trajectories underpins the accuracy of simulations in other
ensembles11 and is pivotal for capturing temperature changes
arising from, for example, adiabatic compression or endo- or
exothermic chemistry.12,13

It was shown that the systematic drifts in the total energy
seen in Born−Oppenheimer molecular dynamics arise from a
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broken time reversal symmetry that is an outcome of the use of
charge distributions obtained from the nonlinear SCF
optimization in previous time steps as starting guesses for the
SCF procedure.14−16 Time reversal symmetry can be restored
in Born−Oppenheimer molecular dynamics through the use of
an extended Lagrangian framework from which the starting
guesses for the SCF optimization are auxiliary degrees of
freedom that are propagated using a time reversible
integrator.15,17,18 Extended Lagrangian Born−Oppenheimer
molecular dynamics has been successfully implemented in
density functional theory with Gaussian and plane wave basis
sets,19−21 Hartree−Fock theory, and self-consistent charge
transfer tight-binding theory (also known as density functional
tight binding22) with linear scaling electronic structure
solvers.23−25 Here, we demonstrate a new application of the
extended Lagrangian Born−Oppenheimer molecular dynamics
formalism to a tight-binding model under the constraint of local
charge neutrality6,26−31 where the diagonal (on-site) elements
of the tight-binding Hamiltonian are adjusted self-consistently
such that every atom is charge neutral. The application of the
local charge neutrality boundary condition is a common
practice in tight-binding models of materials. It is physically
motivated by the short screening distances around charges in
metals,32 and, from a practical point of view, it avoids the
unphysical “charge sloshing”, that is, wild spatial fluctuations in
the electronic density from one SCF to the next, that can arise
during self-consistent charge transfer tight binding. The
application of local charge neutrality means that the system
does not propagate on the regular self-consistent Born−
Oppenheimer surface but rather on a constrained Born−
Oppenheimer potential energy surface. Nevertheless, the
restoration of time reversal symmetry in the SCF procedure
using an extended Lagrangian formalism yields the same
outcome, namely, a precise conservation of the total energy
with a simultaneous reduction in the number of SCF cycles that
are required at each time step.
The first extended Lagrangian approach to molecular

dynamics most probably goes back to Andersen in 1980,33

which shortly thereafter was generalized by Parrinello and
Rahman.34 The extended Lagrangian approach was later
applied to plane wave ab initio molecular dynamics in the
Car−Parrinello method in 1985.35 This method had a
significant impact since it, for the first time, allowed more
general applications of first principles molecular dynamics
simulations based on density functional theory. Other extended
Lagrangian formulations of molecular dynamics include, for
example, the famous Nose ́ thermostat from 1984.36 Extended
Lagrangian molecular dynamics has been applied to many
problems in atomistic simulations. In electronic structure
theory, formulations have typically been direct adaptations of
the Car−Parrinello method to different choices of the
electronic degrees of freedom.37−39 In extended Lagrangian
Car−Parrinello molecular dynamics, the electronic degrees of
freedom are propagated on-the-fly with the nuclei and it does
not require an expensive SCF optimization at each time step.
However, the dynamics are sensitive to the value of a fictitious
electron mass parameter, μ, the time step is often much smaller
than those used in Born−Oppenheimer molecular dynamics,
and, significantly for this work, the Car−Parrinello method
requires a nonvanishing HOMO−LUMO or band gap to work
efficiently.40 Here, we focus solely on a new and practical
application of the extended Lagrangian Born−Oppenheimer
molecular dynamics formalism that is particularly adapted for

metals. Detailed discussions of the connections between
extended Lagrangian Car−Parrinello and extended Lagrangian
Born−Oppenheimer molecular dynamics can be found in refs
41 and 42.
In the next section, we outline a general framework for tight-

binding models under local charge neutrality, and in Section 3
we give a brief overview of the extended Lagrangian Born−
Oppenheimer molecular dynamics formalism. An sd-valent
tight-binding model for titanium is described in the Appendix
that we apply in extended Lagrangian Born−Oppenheimer
molecular dynamics simulations in Section 4. A brief discussion
and conclusions are presented in Section 5.

2. TIGHT BINDING UNDER THE CONSTRAINT OF
LOCAL CHARGE NEUTRALITY

Tight-binding theory under the self-consistent application of
local charge neutrality starts from an effective single particle
Hamiltonian, H, that is a sum of the charge independent
Slater−Koster Hamiltonian,5 H0, and a set of atom-centered
potentials, H1, that self-consistently adjust the electronic
occupations such that the set of Mulliken partial charges, q =
{qk} → 0, that is

= +H H H0 1 (1)

The Slater−Koster Hamiltonian represents the angular and
distance-dependent overlap between valence orbitals on
neighboring atoms, and the matrix elements of H1 are

δ δ= Δα β α βH Hi j i j i j,
1

, , , (2)

where i and j label atoms, α and β label orbitals, δi,j is the
Kronecker delta, and ΔH is the self-consistently calculated shift
in the on-site energy.
In the following, we assume that the set of atomic orbitals is

orthogonal, that is, the overlap matrix is equal to the identity
matrix. The potential energy is

= + ER P PH( , ) 2Tr[ ] pair (3)

where R = {Rk} is the set of atomic coordinates, Tr[X] denotes
the trace of matrix X, and Epair is a sum of pair potentials that
provide strong repulsion at short range and weak attraction at
long range. P is the density matrix computed self-consistently
from H under the condition that

= NP2Tr[ ] e (4)

where Ne is the total number of electrons, and q = 0, where

∑= −
α

α α α α
∈

q P P2 [ ]i
i

i i i i, ,
0

(5)

and P0 is the density matrix for neutral, noninteracting atoms.
At finite temperature, the free energy,20,43 , is

= − T SR P P( , ) ( )e (6)

Te is the temperature of the electronic subsystem, and

∑= − + − −S k f f f fP( ) 2 [ ln (1 ) ln(1 )]
n

n n n nB
(7)

is the electronic entropy where kB is Boltzmann’s constant and
f n is an eigenvalue of the density matrix P, or equivalently the
occupation factors of the states

= + ϵ − ϵ −f k T[1 exp(( )/ )]n n F B e
1

(8)
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where ϵn is an eigenvalue of H and ϵF is the Fermi energy, or
chemical potential. The application of an often large, fictitious
electronic temperature is a standard method in electronic
theory when there is no gap at the chemical potential and/or
when interatomic bonds are broken or formed. The use of a
finite electronic temperature enables the occupancy of states in
the vicinity of the chemical potential to adjust smoothly in
response to changes in the nuclear coordinates to maintain a
smooth and continuous potential energy surface. We evaluate
the set of on-site shifts, {ΔHi,i}, in eq 2 via

∑γΔ =
=

H q( )i i
n

N

i n,
1

SCF

(9)

where NSCF is the number of SCF cycles and (qi)n is the value
of the Mulliken partial charge on atom i at SCF cycle n.44 The
Hamiltonian H is reconstructed at each SCF cycle, and the set
of Mulliken partial charges is recalculated using eq 5. The SCF
procedure in eq 9 is analogous to an integrating control
mechanism that drives the system toward local charge
neutrality by either increasing the on-site energies to push
charge from each atomic site the net charge qi > 0 or decreasing
the on-site energy to draw charge onto the atom if qi < 0. The
SCF procedure in eq 9 may be stopped when the magnitude of
all of the Mulliken partial charges fall below a user defined
tolerance, qtol. In our molecular dynamics simulations, we use
either an absolute tolerance, qtol, on the Mulliken partial charges
or a user-specified number of SCF cycles per time step. The
latter approach is informative since we can compare regular and
extended Lagrangian Born−Oppenheimer molecular dynamics
at the same level of computational expense. One could achieve
precise conservation of the total energy in regular Born−
Oppenheimer molecular dynamics if sufficient SCF conver-
gence were achieved, although the computational expense of
such a procedure would make this approach impractical for real
simulations.

3. EXTENDED LAGRANGIAN QUANTUM-BASED
MOLECULAR DYNAMICS

In extended Lagrangian Born−Oppenheimer molecular dy-
namics, auxiliary electronic degrees of freedom, h = {hi}, are
introduced that are constrained to evolve in a harmonic
potential that is centered on the self-consistent solution.18 In
self-consistent local charge neutral tight-binding theory, the
self-consistently calculated parameters for which good starting
guesses are required for the SCF optimization at each time step
are the chemical potential (at finite Te) and {ΔHi,i}. This work
is a new application of the extended Lagrangian Born−
Oppenheimer molecular dynamics formalism since we
propagate a potential, the elements of H1, rather than a charge
density. The extended Lagrangian for {ΔHi,i} is

∑ ∑

∑

μ

μω

̇ ̇ = ̇ − + ̇

− Δ −

= =

=

m R h

H h

R R h h R P( , , , )
1
2

( , )
1
2

1
2

( )

k

N

k k
k

N

k

k

N

k k k

1

2

1

2

2

1
,

2

(10)

where dots denote time derivates, N is the number of atoms,
and μ and ω are fictitious mass and frequency parameters for
the harmonic potential, respectively. The {ΔHi,i} that enter the
extended Lagrangian are the final values obtained from the SCF
procedure in eq 9 in the preceding time step. An equivalent

extended Lagrangian is constructed for the chemical potential.
The equations of motion are

∑μω̈ = − ∂
∂

− ∂
∂

Δ −
=

m R
R R

H h
R P( , )

2
( )i i

i i k

N

k k k

2

1
,

2

(11)

and

μ μω̈ = Δ −h H h( )i i i i
2

, (12)

Upon taking the limit μ → 0, we recover the regular equations
of motion for the atoms

̈ = − ∂
∂

m R
R
R P( , )

i i
i (13)

and an equation of motion for the auxiliary degrees of freedom

ω̈ = Δ −h H h( )i i i i
2

, (14)

both of which can be propagated using a time-reversible Verlet
integrator.45 Equation 13 remains valid even at finite electron
temperature provided that the occupany of the states is
described using the Fermi−Dirac distribution since the force
derived from the electronic entropy is canceled exactly by the
Pulay force that arises at finite Te.

43

The power of this approach is that the auxiliary degrees of
freedom, h, can be used as starting guesses to the SCF
optimization at each time step. Since h is propagated time-
reversibly, the origin of the systematic drift in the total energy
in regular quantum-based molecular dynamics is removed.
Furthermore, with a sufficiently high value of ω, h is always very
close to the self-consistent solution such that relatively few SCF
cycles are required to reach self-consistency. In the case of the
Verlet integrator, the largest curvature of the harmonic wells
that also guarantees stability under incomplete SCF con-
vergence is ω = 21/2/δt.18 We have found that only 1 SCF cycle
per time step is required in self-consistent charge transfer tight-
binding molecular dynamics.25

Since the propagation of the auxiliary degrees of freedom
with a time-reversible integrator is lossless, any numerical noise
or errors that arise in the calculation of the density matrix will
accumulate over time and may eventually lead to the divergence
of the trajectory. To counteract the accumulation of numerical
noise in the auxiliary degrees of freedom, Niklasson et al.24,25,46

developed a series of dissipative integration schemes based on a
modified Verlet algorithm. The modified Verlet integrators for
the auxiliary degrees of freedom at time step t take the form

∑δ α= − + ̈ ++ −
=

−t ch h h h h2t t t t
k

K

k t k1 1
2

0 (15)

where

ω̈ = Δ −Hh h( )t t t
2

(16)

and δt is the size of the time step, κ = δt2ω2, α, and the K + 1
coefficients ck are parameters that control the stability and level
of the dissipation. These parameters are tabulated in ref 46. The
introduction of dissipation via eq 15 breaks time reversal
symmetry in the propagation of the auxiliary degrees of
freedom. The schemes with small values of K provide the
strongest dissipation and break time reversal symmetry to the
greatest extent.24 Similarly, the schemes with large K provide
weak dissipation and break time reversal symmetry weakly. The
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effect of the dissipation schemes (5 ≤ K ≤ 7) on the stability
and systematic drift of the total energy are addressed in Section
4.

4. MICROCANONICAL MOLECULAR DYNAMICS
SIMULATIONS OF A SMALL METALLIC CLUSTER

The application of local charge neutrality in the atomistic
simulation of metals is attractive since it is both a physically
meaningful boundary condition and it provides a relatively
straightforward remedy to SCF instabilities and the charge
sloshing that arises if the density matrix is computed without
constraints on the spatial distribution of charge. In order to
illustrate the utility of combining local charge neutrality with
the extended Lagrangian Born−Oppenheimer molecular
dynamics formalism, we have computed a series of micro-
canonical trajectories on a 32 atom metallic cluster in the gas
phase. The presence of nonequivalent surface and internal
atoms of the cluster give rise to a strong tendency for charge
transfer that is removed by the application of the local charge
neutrality boundary condition. In fact, in regular self-consistent
tight-binding theory, we were not even able to converge the
SCF in a static calculation. Hence, it is a challenging test system
through which our methods can be assessed but not one that
allows a direct comparison between regular self-consistent
charge transfer tight-binding theory and a tight-binding model
under the local charge neutrality boundary condition. Since our
test system is relatively small, we have been able to run
relatively long, 1 ns, trajectories in order to assess the long-term
accuracy and stability of the extended Lagrangian methods.
Periodic test systems without free surfaces would neither give
rise to a strong propensity for SCF instabilities and charge
sloshing nor allow us to compute the long trajectories required
to assess stability. The simulated atomic and electronic
structures of the metallic cluster are beyond the scope of this
work and are not addressed. We focus our analyses only on the
accuracy, long-term stability, and computational expense of the
microcanonical molecular dynamics trajectories.
All of our simulations used a time step of δt = 2 fs and γ =

0.45 eV/electron in the calculation of {ΔHi,i} via eq 9. The size
of the time step is consistent with classical and Born−
Oppenheimer molecular dynamics and is much larger than the
time steps typically used in Car−Parrinello molecular
dynamics.35 The cluster was created from 2 × 2 × 2 hexagonal
close packed (hcp) unit cells that was subsequently relaxed by
performing constant temperature molecular dynamics at a
temperature of 300 K with a velocity rescaling thermostat for
25 000 time steps. The coordinates and momenta from this
simulation were used as the starting condition for a series of 1
ns microcanonical trajectories.
In Figure 1, we present the total energy as a function of

simulation time from regular MD trajectories under the local
charge neutrality constraint where the starting guesses for the
SCF process at each time step are taken as the on-site shifts,
ΔH, and Fermi energy from the last SCF cycle of the preceding
time step. Here, all of the trajectories exhibit systematic drifts in
the total energy that are reduced by increasing the number of
SCF cycles in eq 9 at each time step. The dependence of the
systematic drift in the total energy on the number of SCF cycles
is tabulated in Table 1. The systematic drifts in the total energy
seen in these trajectories originate from broken time reversal
symmetry in the generation of starting guesses for the SCF
procedure at each time step.

The use of weak dissipation in the propagation of the
auxiliary degrees of freedom via eq 15 in extended Lagrangian
Born−Oppenheimer molecular dynamics is necessary to ensure
the long-term stability of the trajectories. In Figure 2, we plot

the total energy as a function of time from an extended
Lagrangian trajectory computed with 3 SCF cycles per time
step and no dissipation, that is, the auxiliary degrees of freedom
were propagated using a regular Verlet integrator. Here, the
accumulation of numerical noise caused the trajectory to
diverge after only 2.5 ps. Upon the introduction of dissipation
in the propagation of the auxiliary degrees of freedom via eq 15,

Figure 1. Total energy versus simulation time from regular
microcanonical MD simulations with increasing numbers of SCF
cycles per 2 fs time step.

Table 1. Systematic Drift in the Total Energy from Regular
and Extended Lagrangian Molecular Dynamics Trajectories
as a Function of the Number of SCF Cycles Per Time Stepa

energy drift (μeV/atom/ps)

NSCF regular MD extended Lagrangian MD

2 −700 −2.2
3 320 −0.078
4 −5.7 <0.0052
5 8.9 <0.0098
6 0.25 <0.00063
7 0.38 <0.0012

aThe extended Lagrangian trajectories were computed with the
dissipation scheme with K = 5.

Figure 2. Extended Lagrangian trajectory computed with 3 SCF cycles
per time step and no dissipation in the propagation of the auxiliary
degrees of freedom.
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the extended Lagrangian trajectories exhibit greatly improved
long-term stability. However, the strongest dissipation scheme,
K = 3, which breaks time reversal symmetry to the greatest
extent, gives rise to a notable systematic drift in the total energy
with 3 SCF cycles per time step that is absent in the schemes
with weaker dissipation. The dissipation schemes with 4 ≤ K ≤
9 generated trajectories with almost identical stability and
energy conservation.
All of the extended Lagrangian trajectories computed with 3

SCF and dissipation K > 3 cycles per time step exhibited a small
systematic drift in the total energy. Nevertheless, the magnitude
of the energy drifts were about 4 orders of magnitude smaller
than those obtained from regular molecular dynamics
simulations with 3 SCF cycles per time step and about a factor
of 3 smaller than that measured in a regular molecular dynamics
trajectory with 6 SCF cycles per time step. The magnitude of
the systematic drifts in the total energy in extended Lagrangian
Born−Oppenheimer molecular dynamics when 4 or more SCF
cycles per time step were used were so small that in Table 1 we
can provide only the upper limits. This is illustrated in Figure 3,

where trajectories computed using the extended Lagrangian
formalism with 4 SCF cycles per time step and dissipation
schemes K = 5, 6, and 7 are plotted together with regular
Born−Oppenheimer molecular dynamics trajectories computed
with 4 and 6 SCF cycles per time step. We consistently observe
that the systematic drifts in the total energy from extended
Lagrangian Born−Oppenheimer trajectories are at least 4
orders of magnitude smaller than those seen in regular
molecular dynamics trajectories with the same number of
SCF cycles per time step.
While Table 1 and Figure 3 clearly illustrate that the

extended Lagrangian formalism yields vastly improved long-
term energy conservation with respect to regular Born−
Oppenheimer molecular dynamics at the same computational
expense, that is, identical numbers of SCF cycles per time step,
it is also informative to study the relative performance of the
two schemes when the SCF procedure in eq 9 is instead
converged to a user-defined tolerance. In Figure 4a,b, we
present the total energy as a function of simulation time for
regular and extended Lagrangian Born−Oppenheimer molec-
ular dynamics trajectories where the SCF procedure has been
converged such that the magnitude of all of the Mulliken
charges are less than qtol = 10−4 and 10−5 electrons, respectively.

The magnitude of the systematic energy drift of the trajectories
presented in Figure 4 as well as the average number of SCF per
time step required to reach SCF convergence is given in Table
2. The regular Born−Oppenheimer molecular dynamics

trajectories exhibit significant systematic energy drifts even
under an absolute tolerance on the SCF procedure at each time
step owing to the broken time reversal symmetry in the
propagation of the chemical potential and {ΔHi,i}. Tightening
the tolerance on the SCF procedure in regular Born−
Oppenheimer molecular dynamics from qtol = 10−4 to 10−5

electrons decreases the magnitude of the drift by a factor of 2.4
while the mean number of SCF cycles per time step increases
from 4.50 to 6.07. The trajectories computed using the
extended Lagrangian formalism exhibit significantly smaller
energy drifts than the regular Born−Oppenheimer molecular
dynamics trajectories. Furthermore, the extended Lagrangian
trajectories also require fewer SCF cycles at each time step to
converge the Mulliken partial charges to less than qtol, leading
to better computational performance. Hence, whether one opts
to use a fixed number of SCF cycles per time step or a user-
defined tolerance on the SCF procedure, the extended
Lagrangian formalism gives rise to significantly improved
long-term energy conservation provided that the SCF
procedure brings the starting guess to the SCF procedure
(the auxiliary degrees of freedom) infinitesimally closer to the
self-consistent ground state.

Figure 3. Extended Lagrangian trajectories computed with 4 SCF
cycles per 2 fs time step and dissipation schemes K = 5, 6, and 7 and
regular MD trajectories computed with 4 and 6 SCF cycles per time
step. The total energies have each been offset by 0.002 eV for clarity.

Figure 4. Regular and extended Lagrangian Born−Oppenheimer
molecular dynamics trajectories where the SCF procedure has been
converged to a tolerance, qtol, on the maximum partial charge on any
atom at each time step. (a) qtol = 10−4 and (b) qtol = 10−5 electrons.
The extended Lagrangian trajectories used the dissipation scheme K =
5.

Table 2. Systematic Drift in the Total Energy in μeV/atom/
ps and the Average Number of SCF Cycles Per Time Step,
⟨NSCF⟩, from Regular and Extended Lagrangian Molecular
Dynamics Trajectories under an Absolute Tolerance, qtol, on
the SCF Convergence at Each Time Step

regular
MD

extended Lagrangian
MD

qtol = 10−4 electrons energy drift 0.92 −0.087
⟨NSCF⟩ 4.50 2.95

qtol = 10−5 electrons energy drift 0.38 <−0.0041
⟨NSCF⟩ 6.07 4.07
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5. CONCLUSIONS
The extended Lagrangian Born−Oppenheimer molecular
dynamics formalism has been applied to charge-constrained
tight-binding molecular dynamics. The time-reversible prop-
agation of auxiliary degrees for freedom for self-consistently
calculated variables, in this case, the on-site shifts in the tight-
binding Hamiltonian that remove charge transfer, leads to
microcanonical trajectories with greatly improved energy
conservation and an overall reduction in the computational
expense compared with regular molecular dynamics trajectories.
The introduction of weak dissipation in the propagation of the
auxiliary degrees of freedom ensures the long-term stability of
the trajectories with no discernible effects on the conservation
of the total energy.

■ APPENDIX

Tight Binding Model for Titanium
A.1. Density Functional Theory Calculations. The plane

wave density functional theory calculations used in the
parametrization and testing of our tight-binding model for
titanium were performed using the VASP code. We used the
generalized gradient approximation exchange correlation func-
tional of Perdew, Burke, and Ernzerhof47 and projector
augmented plane wave potentials.48,49 A plane wave cutoff
energy of 375 eV was used in all calculations. Increasing the
plane wave cutoff beyond this value led to no change in the
calculated equilibrium lattice parameters of various titanium
phases. A fictitious electron temperature corresponding to 0.2
eV was applied in all calculations to improve the convergence of
the self-consistent field optimization. The density of the k-point
meshes was increased systematically until the total energy had
converged to within 0.1 meV/atom.
A.2. Parameterization of Tight-Binding Model. An

orthogonal local charge neutral tight-binding model for
titanium that shows very good transferability to a number of
crystal structures has been developed. Since the d-electron band
of Ti has only 2 electrons and it hybridizes strongly with the 3s
orbitals, we elected to build the tight-binding model using an sd
basis, that is, one s and five d orbitals per Ti atom. The off-
diagonal elements of the Slater−Koster Hamiltonian, H0, are
angularly dependent combinations of purely radially dependent
bond integrals, hll′τ(Rij), where Rij is the distance between atoms
i and j, l labels the azimuthal quantum number (s, p, d, etc.),
and τ = σ, π, δ, etc. The diagonal elements of H0 are equal to
the energies of the valence orbitals on isolated atoms, εs and εd.
The radial dependences of the ssσ, sdσ, ddσ, ddπ, and ddδ
bond integrals and εs and εd were parametrized by fitting
electronic densities of states computed via a reciprocal space
implementation of eq 3 to the densities of states computed
using density functional theory for Ti in the face centered cubic
(fcc) and body centered cubic (bcc) crystal structures as a
function of volume. We represent the radial dependence of the
bond integrals by a product of exponentials

∏=τ τ′ ′
=

h R h R A R( ) ( ) exp( )ll ij ll
k

k ij
k

0
1

2

(17)

where R0 is a reference bond distance and {Ak} are adjustable
parameters. Equation 17 is replaced by the polynomial

∑= −τ′
=

t R B R R( ) ( )ll ij
k

k ij
k

0

5

1
(18)

to smoothly terminate the bond integrals at a distance Rij = Rcut.
The parameters {Bk}are defined by matching the value and first
and second derivates of hll′τ and tll′τ at Rij = R1 and by setting
the value and first and second derivates of tll′τ to zero at Rij =
Rcut. The parametrization for the five bond integrals is tabulated
in Table 3, and the radial dependence of the bond integrals is

presented in Figure 5. The polynomial cutoff tail was added at
R1 = 3.2 Å and terminated between second and third nearest
neighbors in the hcp lattice at Rcut = 4.4 Å for each bond
integral. The free-atom orbital energies that gave the gave the
best fit for the fcc and bcc electronic densities of states were εs
= −5.5 and εd = −3.0 eV.
The densities of states of hcp, fcc, and bcc Ti computed using

our tight-binding parametrization and density functional theory
are presented in Figure 6, panels a−c, respectively. Owing to

Table 3. Parameterization of the Radial Dependences,
hll′τ(Rij), of the Ti−Ti Bond Integrals

ll′τ R0 (Å) hll′τ(R0) (eV) A1 (Å
−1) A2 (Å

−2)

ssσ 2.89 −0.375 −1.00 −0.10
sdσ 2.89 −0.375 −1.00 −0.10
ddσ 2.89 −0.82 −1.25 −0.20
ddπ 2.89 0.57 −1.25 −0.25
ddδ 2.89 −0.15 −1.05 −0.20

Figure 5. Radial dependences of the Ti−Ti bond integrals, hll′τ(R).

Figure 6. Electronic densities of states for (a) ideal c/a hcp, (b) fcc,
and (c) bcc titanium computed via k-space tight-binding and density
functional theory.
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the small difference in energy between the bcc and close packed
phases in Ti we found it to be necessary to reproduce with
good fidelity the bcc densities of states as well as the densities
of states for the close packed phases in order to achieve a good
representation of the phase stability. The electronic densities of
states obtained from the orthogonal, sd valent tight-binding
parametrization are in excellent agreement with those obtained
from density functional theory and suggest that our para-
metrization of H0 is transferable between close packed and
more open crystal structures.
The sum of pair potentials

∑ ∑= Φ
= ≠

=
E R

1
2

( )
i

N

j i

N

ijpair
1 j 1

(19)

was parametrized so that cohesive energies computed from our
tight-binding model over a range of volumes match the results
of identical calculations performed using density functional
theory, that is

− = −DFT DFT
atoms

TB TB
atoms

(20)

where atoms is the sum of the free energies of spin polarized
isolated atoms,50 and DFT and TB are the total potential
energy obtained from density functional theory and our tight-
binding model, respectively. We represent the pair potential by

∏Φ = + −
=

R D D R E FR( ) exp( ) exp( )ij
k

k ij
k

ij0
1

4

(21)

where {Dk}, E, and F are fitting parameters. Equation 21 is
smoothly terminated at a specified distance using the
polynomial function given in eq 18. The pair potential was
fitted to density functional theory calculations of the cohesive
energy of hcp Ti with c/a = 1.583 upon homogeneous dilation
of the lattice. Atoms up to and including the third nearest
neighbor shell were included in the sum over neighbors in eq
19. The parametrization of eq 21 is provided in Table 4, and its
radial dependence is presented in Figure 7.

Our model exhibits good transferability between a number of
different crystal structures. Energy differences between
equilibrium crystal structures, Δ , and lattice parameters
computed via our tight-binding model and density functional
theory are presented in Table 5. The model not only predicts
the correct order of structural stability, ω-Ti < hcp < fcc < bcc,
but also yields good quantitative predictions for the energy
differences. The predicted energy difference between the hcp
and fcc structures is within 0.6% of the value calculated using
density functional theory. Hence, we can expect our model to
give a very good estimate for the energy of the intrinsic stacking
fault in hcp Ti. The lattice parameters predicted by the model

for the hcp, fcc, and bcc structures are in very good accord with
values from experiment, a = 2.951 Å and c/a = 1.587,51 and/or
our density functional theory calculations. The predicted c/a
ratio for the hcp structure overestimates the experimental and
first-principles calculated values by less than 1%. The lattice
parameters predicted for the complex ω-Ti structure deviate
from the first-principles calculated values by less than 5%.
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